quasidihedral group - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasidihedral group - traduction vers russe

Semidihedral group; Quasi-dihedral group; Quasidihedral; Semi-dihedral group; Semidihedral; Semi-dihedral
  • Cayley graph of the dihedral group of order 16
  • Cayley graph of the modular maximal-cyclic group of order 16
  • [[Cayley graph]] of the quasidihedral group of order 16

quasidihedral group         

математика

квазидиэдральная группа

semidihedral group         

математика

полудиэдральная группа

group operation         
  • alt=The clock hand points to 9 o'clock; 4 hours later it is at 1 o'clock.
ALGEBRAIC SET WITH AN INVERTIBLE, ASSOCIATIVE INTERNAL OPERATION ADMITTING A NEUTRAL ELEMENT
GrouP; MathematicalGrouP; MathematicalGroup; Mathematical Group; Group (algebra); Group (math); Mathematical group; Group law; Group operation; Group axioms; Group axiom; Group mathematics; Group maths; Group (Mathematics); Translation (group theory); Elementary group theory

математика

групповая операция

Définition

Крайслер

Wikipédia

Quasidihedral group

In mathematics, the quasi-dihedral groups, also called semi-dihedral groups, are certain non-abelian groups of order a power of 2. For every positive integer n greater than or equal to 4, there are exactly four isomorphism classes of non-abelian groups of order 2n which have a cyclic subgroup of index 2. Two are well known, the generalized quaternion group and the dihedral group. One of the remaining two groups is often considered particularly important, since it is an example of a 2-group of maximal nilpotency class. In Bertram Huppert's text Endliche Gruppen, this group is called a "Quasidiedergruppe". In Daniel Gorenstein's text, Finite Groups, this group is called the "semidihedral group". Dummit and Foote refer to it as the "quasidihedral group"; we adopt that name in this article. All give the same presentation for this group:

r , s r 2 n 1 = s 2 = 1 ,   s r s = r 2 n 2 1 {\displaystyle \langle r,s\mid r^{2^{n-1}}=s^{2}=1,\ srs=r^{2^{n-2}-1}\rangle \,\!} .

The other non-abelian 2-group with cyclic subgroup of index 2 is not given a special name in either text, but referred to as just G or Mm(2). When this group has order 16, Dummit and Foote refer to this group as the "modular group of order 16", as its lattice of subgroups is modular. In this article this group will be called the modular maximal-cyclic group of order 2 n {\displaystyle 2^{n}} . Its presentation is:

r , s r 2 n 1 = s 2 = 1 ,   s r s = r 2 n 2 + 1 {\displaystyle \langle r,s\mid r^{2^{n-1}}=s^{2}=1,\ srs=r^{2^{n-2}+1}\rangle \,\!} .

Both these two groups and the dihedral group are semidirect products of a cyclic group <r> of order 2n−1 with a cyclic group <s> of order 2. Such a non-abelian semidirect product is uniquely determined by an element of order 2 in the group of units of the ring Z / 2 n 1 Z {\displaystyle \mathbb {Z} /2^{n-1}\mathbb {Z} } and there are precisely three such elements, 2 n 1 1 {\displaystyle 2^{n-1}-1} , 2 n 2 1 {\displaystyle 2^{n-2}-1} , and 2 n 2 + 1 {\displaystyle 2^{n-2}+1} , corresponding to the dihedral group, the quasidihedral, and the modular maximal-cyclic group.

The generalized quaternion group, the dihedral group, and the quasidihedral group of order 2n all have nilpotency class n − 1, and are the only isomorphism classes of groups of order 2n with nilpotency class n − 1. The groups of order pn and nilpotency class n − 1 were the beginning of the classification of all p-groups via coclass. The modular maximal-cyclic group of order 2n always has nilpotency class 2. This makes the modular maximal-cyclic group less interesting, since most groups of order pn for large n have nilpotency class 2 and have proven difficult to understand directly.

The generalized quaternion, the dihedral, and the quasidihedral group are the only 2-groups whose derived subgroup has index 4. The Alperin–Brauer–Gorenstein theorem classifies the simple groups, and to a degree the finite groups, with quasidihedral Sylow 2-subgroups.

Traduction de &#39quasidihedral group&#39 en Russe